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Equation of State for Molten Alkali Metal Alloys1
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Calculated results of the liquid density of binary molten alloys of Na-K and
K-Cs over the whole range of concentrations and that of a ternary molten
eutectic of Na-K-Cs from the freezing point up to several hundred degrees
above the boiling point are presented. The calculations were performed with the
analytical equation of state proposed by Ihm, Song, and Mason, which is based
on statistical-mechanical perturbation theory. The second virial coefficients were
calculated from the corresponding-states correlation of Mehdipour and
Boushehri. Calculation of the other two temperature-dependent parameters was
carried out by scaling. The calculated results cover a much wider range of tem-
peratures and are more accurate than those presented in our previous work.

KEY WORDS: alkali metal alloys; cohesive energy; equation of state; statisti-
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1. INTRODUCTION

There is an increasing demand for a reliable and consistent set of ther-
modynamic data for alkali metals. This demand is based on their growing
technical importance, due mainly to their specific advantages for high-tem-
perature applications. Alkali metals act as working fluids for Rankine
cycles, solar power plants, and magnetohydrodynamic power generation
[1,2]. The rapidly increasing fuel costs and need for improved thermal
efficiency of power plants consequently led to an increase in the peak tem-
peratures of the cycles.

Because of their wide range of applicability and simple electronic
structure, liquid alkali metals have often been chosen as prototype elements
for research, but there are temperature regions where accurate information
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on the thermodynamic properties does not exist. Prediction of these
properties appears at present to be the only alternative to the experimental
difficulties associated with their measurement.

Modern perturbation theories of liquids [3,4] have been developed
over the past 20 years based on the recognition that the structure of dense
fluids is determined by the repulsive forces, so that fluids of hard bodies
can serve as useful reference systems [5]. The influence of the attractive
forces can then be treated by statistical-mechanical perturbation theory, as
can the softness of repulsions. Given the intermolecular forces, it is now
possible to predict thermodynamic properties of dense fluids from pertur-
bation theories over their stable range of temperature and density.

The purpose of this paper is to present a method for predicting the
equation of state of molten alkali metal alloys from properties that are
readily available at ordinary pressures and temperatures. In particular, we
use the surface tension and the liquid density at the boiling temperature as
two scaling constants that have been shown to correlate and predict the
behavior of molten alkali metals [6].

2. THEORY

We begin with the pressure equation and the assumption that the
intermolecular potential is pairwise additive [7]:

where p is the pressure, p is the molar (number) density, kT is the thermal
energy, u(r) is the intermolecular pair potential, and g(r) is the pair dis-
tribution function. Song and Mason [ 8 ] applied the perturbation theory of
Weeks-Chandler-Andersen [4] and corrected for the attractive forces to
obtain

where B2 is the second virial coefficient, a is a temperature-dependent
parameter that scales for the softness of the repulsive forces, b is a tem-
perature-dependent analogue of the van der Waals covolume related to a
by b = d(AT)/dT, and G(bp) is the average pair distribution function at
contact for equivalent hard nonspherical convex bodies. The parameters
B2, A, and b are related to the intermolecular potential by integrations.
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A new strong principle of corresponding states is contained in Eq. (2),
which led to an appreciable improvement in both accuracy and simplicity
[9]. The basic idea is that the form of G(bp) does not need to be specified
according to some model of a fluid composed of hard convex bodies but
that Eq. (2) can be solved for G(bp) in terms of Z=p/(pRT), A, B2, and p,
all of which can be determined from experiment, and this particular com-
bination of quantities is then predicted to be a function of the single
variable bp. A whole p-v-T surface is thereby collapsed into a single curve
by plotting the data in this special way. Plots of p-v-T data for a number
of fluids showed that G ( b p ) - l verus bp is a straight line with a slope that
depends on the particular substance.

The preceding results culminate in the equation of state:

where 1 is the absolute value of the slope of G-1 as a function of bp.
The formal extension of Eq. (3) to mixtures can be written in the form

[10]

where p is the total molar density, xi and Xj are mole fractions, and the
double summations run over all components of the mixture. The quantities
Fij and Gij are given in Ref. 10.

The interaction parameters (B2) i j, Aij, and by for bij correspond to a
hypothetical substance whose molecules interact according to a pairwise i-j
potential. The purpose of this work is to use Eq. (4) for molten alkali metal
alloys on the basis of minimal input information, that is, the surface ten-
sion and the liquid density at the boiling point.

3. THE TEMPERATURE-DEPENDENT PARAMETERS

A fundamental requirement for the theoretical calculation of the tem-
perature-dependent parameters of the equation of state is a knowledge of
sound reliable pair-potential energy functions for which any two atoms
of the gas interact. For alkali metal vapors the problem reduces to that of
obtaining the ground singlet and triplet potential energy curves. Previous
calculations of B2(T) for alkali vapors consist of the values reported
by Sinanoglu and Pitzer [11] for Na, by Davies et al. [12] for K, by
Sannigrahi et al. [13] for the vapors of Li through Cs, and by Mies and
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Julienne [14] and Holland et al. [15, 16] for Li and Na. All these authors,
except the latter, based their calculations on either the Morse or the
Rydberg functions to represent the singlet potential, which gives too much
attraction at large internuclear separation and, hence, overestimates the
absolute value of the second virial coefficient.

More recently Nieto de Castro et al. [17] used reliable analytical
potentials for both the singlet and the triplet states of all the alkali
homonuclear diatomic interactions proposed by Varandas et al. [18, 19] to
calculate the second virial coefficient at temperatures from 600 to 3000 K.
Their accurate calculations do not agree very well with the previous
methods, especially at low temperatures, and they claim that the interpreta-
tion of experimental data on the thermophysical properties of alkali metals
is complicated by the formation of dimers. Thus, there is seldom any
accurate straightforward potential energy function for which the second
virial coefficient and the other two temperature-dependent parameters can
be calculated over a wide range of temperatures. However, B2(T) can be
found experimentally, and A ( T ) and b(T) can be calculated from B2(T) by
means of simple two-constant scaling rules [20]. Unfortunately, the
experimental values of B2( T) for alkali vapors are scarce.

In the circumstances where the experimental values of B2(T) or an
accurate potential energy function for their calculations are not available,
there are several correlation procedures (usually based on the law of
corresponding states) by which B2(T) can be estimated with reasonable
accuracy. The best of these requires three constants [21,22]: the critical
temperature, the critical pressure, and the Pitzer acentric factor. Boushehri
and Mason [23] reduced the problem to finding at least two scaling con-
stants available from simple measurements at ordinary temperatures and
pressures, namely, the heat of vaporization and the liquid density at the tri-
ple point. Their method has been extended to molten alkali metals by
Ghatee and Boushehri [24] and to molten alkali metal alloys by Eslami
and Boushehri [25]. Mehdipour and Boushehri [6] have used the surface
tension and the liquid density at the boiling temperature as two scaling
constants to obtain the following correlation, which is superior to the pre-
vious one [24].

with
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and

where yb and pb are the surface tension and the liquid density at the boiling
point, respectively, and N is Avogadro's number.

The calculation of the other two temperature-dependent parameters
can be done by scaling using the Lennard-Jones (12-6) potential [6]:

where

The present correlation can be generalized to mixtures of any number
of components, a result which would have great predictive power. The
simplest combining rules for predicting unlike-molecule interactions from
the like-molecule interactions are a geometric mean for y and T and an
arithmetic mean for rm, the potential well-depth position, i.e.,

and

Once (yb)ij and ( p b ) i j are known, the values of (B2) i j, Aij, and bij follow
from Eqs. (5)-(12) as for single substances.

4. COMPARISON WITH EXPERIMENT

We have used the tabulations of Vargaftik [26] and Adamson [27]
for the liquid density and the surface tension at the boiling point, respec-
tively, to calculate the temperature-dependent parameters of the equation
of state with Eqs. (5)-(9). Knowing the values of the temperature-depen-
dent parameters, it takes one experimental p—v-T datum point to calculate
the free parameter of the equation of state. The values of 1 so specified for
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Fig. 1. Average percentage deviation,
( P c a l c / P e x p — 1) x 100, of the density of
molten alloys of K-Cs ( C ) , Na-K ( C ) ,
and Na-K-Cs (A) with the experimental
values [30,31]. The corresponding open
symbols are from the previous work [25],

Table I. Density of Alkali Metals

T
(K.)

350
550
750
950

1150
1300

350
550
750
950

1150
1300

P
(bar)

2.532 x l 0 - 9

1.385 xl0 - 3

9.224 x 1 0 - 2

1.021
4.809

11.00

2.403 x 10 - 9

1.253xl0 -3

8.495 xl0 - 2

0.9559
4.579

10.59

pcalc

( m o l . L - 1 )

0.1 K + 0.8Cs

13.67
13.24
12.41
11.55
10.62
9.82

0.2 K + 0.8 Cs

14.15
13.79
12.95
12.07
11.12
10.31

pexp

(mol .L - 1 )

14.17
13.29
12.40
11.50
10.57
9.85

14.74
13.84
12.92
11.98
11.03
10.33

Dev.
(%)

-3.53
-0.39

0.05
0.43
0.47

-0.34

-4.00
-0.36

0.18
0.71
0.86

-0.16
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Table I. (Continued)

T
(K.)

350
550
750
950

1150
1300

350
550
750
950

1150
1300

350
550
750
950

1150
1300

350
550
750
950

1150
1300

350
550
750
950

1150
1300

P
(bar)

2.274 x 10 -9

1.122x10 -3

7.765 x 10 -2

0.8909
4.350

10.18

2.145x10-9

9.899 xl0 -4

7.036 x 10 -2

0.8259
4.121
9.768

2.009x10-9

8.515 xl0 -4

6.270 x 10 -2

0.7576
3.880
9.336

1.886 xl0 - 9

7.263 xl0 - 4

5.576 xl0 - 2

0.6958
3.662
8.946

1.757 xl0 - 9

5.945 x 10 -4

4.847 x 10-2

0.6308
3.433
8.457

pcalc

(mol.L - 1)

0.3 K + 0.7 Cs

14.73
14.38
13.52
12.62
11.66
10.84

0.4K+0.6CS

15.34
15.01
14.14
13.22
12.24
11.40

0.505 K + 0.495 Cs

16.06
15.73
14.84
13.89
12.89
12.04

0.6 K + 0.4 Cs

16.86
16.42
15.52
14.54
13.52
12.66

0.7 K + 0.3 Cs

17.51
17.22
16.29
15.14
13.89
13.19

pexp

(mol .L - 1 )

15.33
14.39
13.45
12.49
11.52
10.80

15.85
14.91
13.94
12.97
11.98
11.24

16.37
15.39
14.43
13.42
12.43
11.68

17.10
16.09
15.09
14.06
13.02
12.23

18.10
17.06
15.99
14.62
13.52
12.97

Dev.
(%)

-3.91
-0.09

0.53
1.03
1.21
0.41

-3.22
0.70
1.39
1.91
2.11
1.47

-1.89
2.21
2.83
3.47
3.68
3.09

-1.40
2.06
2.85
3.46
3.79
3.54

-3.26
0.93
1.91
3.56
2.74
2.46
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Table I. (Continued)

T
(K.)

350
550
750
950

1150
1300

350
550
750
950

1150
1300

400
600
800

1000
1200

400
600
800

1000
1200

400
600
800

1000
1200

400
600
800

1000
1200

P

(bar)

1.628 x 10-9

4.628 x 10 -4

4 . 1 1 7 x l 0 - 2

0.5658
3.204
8.125

1.499 x l 0 - 9

3.310xl0 -4

3.388 x l 0 - 2

0.5007
2.974
7.715

3.498 x 1 0 - 7

1.314xl0 - 3

7.465 x 10 -2

0.8167
4.093

2.700 x l 0 - 7

1.111 x 10 - 3

6.632 x 1 0 - 2

0.7565
3.925

2.055 x 1 0 - 7

9.077 x l 0 - 4

5.700 x l 0 - 2

0.6747
3.605

1.561 x 1 0 - 7

7.358 x10 - 4

4.842 x l 0 - 2

0.5950
3.277

pcalc

(mol .L - 1 )

0.8 K + 0.2 Cs

18.24
18.08
17.14
16.10
15.02
14.13

0.9 K + 0.1 Cs

19.30
19.02
18.06
16.98
15.87
14.96

0.1 Na + 0.8K

21.16
20.95
19.86
18.70
17.50

0.2 Na + 0.8 K

22.27
22.14
21.04
19.84
18.60

0.3Na + 0.7K

23.49
23.44
22.34
21.09
19.81

0.402 Na+ 0.598 K

24.87
24.91
23.79
22.50
21.18

pexp

(mol .L - 1 )

18.98
17.94
16.83
15.71
14.59
13.69

19.95
18.87
17.72
16.54
15.35
14.44

21.98
20.73
19.50
18.19
16.88

23.24
21.96
20.65
19.31
17.95

24.63
23.26
21.89
20.49
19.08

26.11
24.67
23.20
21.73
20.26

Dev.

(%)

-3.90
0.78
1.80
2.46
2.96
3.21

-3.25
0.79
1.90
2.63
3.40
3.58

-3.69
1.06
1.85
2.80
3.67

-4.20
0.82
1.89
2.74
3.62

-4.63
0.77
2.01
2.93
3.82

-4.75
0.97
2.54
3.54
4.49
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Table I. (Continued)

T

(K.)

400
600
800

1000

1200

400
600
800

1000
1200

400
600
800

1000
1200

400
600
800

1000
1200

400
600
800

1000
1200

400
600
800

1000

P

(bar)

1.184xl0 -7

5.897 xl0 - 4

4.069 x 10 - 2

0.5201
2.953

8.794 x 10 -8

4.634 x 10 -4

3.377 x l 0 - 2

0.4519
2.654

6.708 x 10- 8

3.739 x l 0 - 4

2.885 x l 0 - 2

0.4045
2.450

4.118x10-8

2.624 xl0-4

2.297 x l 0 - 2

0.3523
2.252

2 .225xl0 - 8

1.854 x l 0 - 4

1.958 x l 0 - 2

0.3327
2.238

Pcalc Pexp

(mol.L - 1) (mol.L - 1)

0.5 Na + 0.5 K

26.65
26.48
25.35
24.00
22.63

0.6Na + 0.4K

28.65
28.26
27.12
25.71
24.27

0.681 Na + 0.319 K

29.89
29.87
28.71
27.25
25.77

0.8Na + 0.2K

32.57
32.56
31.38
29.82
28.25

0.9Na + 0.1 K

35.32
35.20
33.97
32.32
30.65

0.1005 Na + 0.4749 K + 0.4246 CS

1.712xl0 -6

2.843 x 10 -3

0.1162
1.087

17.71
16.81
15.85
14.86

27.80
26.32
24.74
23.22
21.64

29.69
28.10
26.46
24.83
23.20

31.46
29.79
28.08
26.38
24.67

34.03
32.39
30.60
28.76
26.93

36.91
35.04
33.09
31.19
29.18

18.46
17.39
16.33
15.26

Dev.

(%)

-4.13

0.61

2.46

3.36
4.52

-3.81
0.57
2.45
3.54
4.69

-4.99
0.27
2.24
3.29
4.45

-4.26
0.52
2.55
3.68
4.90

-4.31
0.45
2.66
3.82
5.00

-4.06
-3.35
-2.90
-2.64



Na, K, and Cs are 0.383, 0.381, and 0.385, respectively. The interaction
parameters of (B2)ij, Aij, and bij are calculated with Eqs. (5)—(12). The
K-Cs mixtures are ideal [28], and the vapor pressures are calculated using
Raoult's law. The activity coefficient data of Kagan et al. [29] were used
to calculate the vapor pressure of K-Na mixtures. Because of the lack of
experimental vapor pressure data for the K-Na-Cs mixture, we have used
the simple Raoult's law to calculate the vapor pressure of the mixture. The
liquid densities of K-Cs and K-Na mixtures over the whole range of con-
centration and a ternary eutectic mixture of Na-K-Cs were calculated from
the freezing point up to several hundred degrees above the boiling point
and are compared with experimental values of Skovordko [30] and
Tepper et al. [31 ], respectively, in Table I. The calculated values have been
compared with the previous work in Fig. 1. The agreement with experiment
is much better than that of the previous work [25].

5. CONCLUSIONS

This work demonstrates that the entire p-v-T surface of molten alkali
metal alloys can be constructed with reasonable accuracy from just two
scaling constants, yb and pb, without invoking "mixing rules." The equa-
tion of state applied to mixtures maintains almost the same accuracy as the
energy and size parameters of the components are varied. This feature dis-
tinguishes the theory from most existing theories, for which the accuracy is
generally good only when the component parameters are not very different.
Even for the steepest liquid branch, the agreement of the calculated results
with experiment [30, 31] is within 5%.

Although the interatomic potentials of alkali metals are inherently dif-
ferent in liquid and vapor phases, Eq. (8) with the Lennard-Jones (12-6)
potential used to calculate a.(T) and b(T] still produces relatively accurate
results. The reason is that a and b depend only on the repulsive branch of
the interatomic potential and hence are relatively insensitive to the detailed
shape of the potential. The free parameter of the equation of state, on the
other hand, compensates for inaccuracies associated with the temperature-
dependent parameters.

The cohesive energy density can be represented by both the heat of
vaporization and the surface tension. Comparison of our results with pre-
vious work [25] shows that a choice of the surface tension as a scaling
constant is better than the heat of vaporization, so that the results cover a
much wider range of temperatures and are in better agreement with experi-
ment [30, 31]. In summary, statistical mechanics now allows the equation
of state of alkali metals and their alloys to be predicted from simple
measurements at ordinary temperatures and pressures.
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